
A 256 Kbits L-TAGE branch predictor
�

André Seznec
IRISA/INRIA/HIPEAC

Abstract
The TAGE predictor, TAgged GEometric length predictor,
was introduced in [10].

TAGE relies on several predictor tables indexed through
independent functions of the global branch/path history and
the branch address. The TAGE predictor uses (partially)
tagged components as the PPM-like predictor [5]. It relies
on (partial) match as the prediction computation function.
TAGE also uses GEometric history length as the O-GEHL
predictor [6], i.e. , the set of used global history lengths
forms a geometric series, i.e.,

�������	��
�������������
. This al-

lows to efficiently capture correlation on recent branch out-
comes as well as on very old branches.

For the realistic track of CBP-2, we present a L-TAGE
predictor consisting of a 13-component TAGE predictor
combined with a 256-entry loop predictor. This predictor
achieves 3.314 misp/KI on the set of distributed traces.

Presentation outline

We first recall the TAGE predictor principles [10] and its
main characteristics. Then, we describe the L-TAGE con-
figuration submitted to CBP-2 combining a loop predictor
and a TAGE predictor. Section 3 discusses implementation
issues on the L-TAGE predictor. Section 4 presents simula-
tion results for the submitted L-TAGE predictor and a few
other TAGE predictor configurations. Section 5 briefly re-
views the related works that had major influences in the L-
TAGE predictor proposition and discusses a few tradeoffs
that might influence the choice of a TAGE configuration for
an effective implementation.

1. The TAGE conditional branch predictor

The TAGE predictor is derived from Michaud’s PPM-
like tag-based branch predictor [5] and uses geometric his-
tory lengths [6]. Figure 1 illustrates a TAGE predictor. The
TAGE predictor features a base predictor T0 in charge of
providing a basic prediction and a set of (partially) tagged

� This work was partially supported by an Intel research grant, an Intel
research equipment donation and by the European Commission in the
context of the SARC integrated project #27648 (FP6).

predictor components Ti. These tagged predictor compo-
nents Ti,

���������
are indexed using different his-

tory lengths that form a geometric series, i.e,
����� ���

���"!�#����$
&%'��� � �������)(+*-,/.0�
.

Throughout this paper, the base predictor will be a sim-
ple PC-indexed 2-bit counter bimodal table; in order to save
storage space, the hysteresis bit is shared among several
counters as in [7].

An entry in a tagged component consists in a signed
counter ctr which sign provides the prediction, a (partial)
tag and an unsigned useful counter u. Throughout this pa-
per, u is a 2-bit counter and ctr is a 3-bit counter.

A few definitions and notations The provider component is
the matching component with the longest history. The al-
ternate prediction altpred is the prediction that would have
occurred if there had been a miss on the provider compo-
nent.

If there is no hitting component then altpred is the de-
fault prediction.

1.1. Prediction computation

At prediction time, the base predictor and the tagged
components are accessed simultaneously. The base predic-
tor provides a default prediction. The tagged components
provide a prediction only on a tag match.

In the general case, the overall prediction is provided by
the hitting tagged predictor component that uses the longest
history, or in case of no matching tagged predictor compo-
nent, the default prediction is used.

However, we found that, on several applications, using
the alternate prediction for newly allocated entries is more
efficient. Our experiments showed this property is essen-
tially global to the application and can be dynamically mon-
itored through a single 4-bit counter (USE ALT ON NA in
the simulator). On the predictor an entry is classified as
“newly allocated” if its prediction counter is weak.

Therefore the prediction computation algorithm is as fol-
lows:

1. Find the matching component with the longest history

2. if (the prediction counter is not weak or
USE ALT ON NA is negative) then the predic-

h[0:L(4)]h[0:L(3)]h[0:L(2)]h[0:L(1)]

hash

=?

hash hash

=?

hash hash

=?

hash hash

=?

hash

tag u tag u pred tag u pred tag upred pred

prediction

pc pc pc pc

pc

base predictor

T0 T1 T2 T3 T4

Figure 1. A 5-component TAGE predictor logical synopsis: a base predictor is backed with several
tagged predictor components indexed with increasing history lengths. On an effective implementa-
tion, predictor selection would be performed thrrough a tree of multiplexors

tion counter sign provides the prediction else the
prediction is the alternate prediction

1.2. Updating the TAGE predictor

Updating the useful counter u The useful counter u of the
provider component is updated when the alternate predic-
tion altpred is different from the final prediction pred.

The useful u counter is also used as an age counter and
is gracefully reset as described below. We use an aging al-
gorithm resetting alternatively the bits of the u counters.

As a small improvement on the updating presented in
[10], after the reset, we flip the signification of the bits u0
and u1 of the useful counter till the next reset:

1 reset No 2n-1: u1=0; until reset No 2n: u= 2u1+u0

1 reset No 2n: u0 =0; until reset No 2n+1: u= 2u0+u1

1 reset No 2n+1: u1=0; until reset No 2n+2: u= 2u1+u0

The period used in the presented predictor for this alter-
nate resetting is 512K branches.

Updating the prediction counters The prediction counter of
the provider component is updated. When the useful counter
of the provider component is null, the alternate prediction is
also updated.

Allocating tagged entries on mispredictions On mispredic-
tions at most one entry is allocated.

If the provider component Ti is not the component using
the longest history (i.e.,

�2���
), we try to allocate an entry

on a predictor component Tk with
�43�56���

The allocation process is described below.
The M-i 7 � counters are read from predictor components

Tj,
�238�9�:�

. Then we apply the following rules.

(A) Avoiding ping-pong phenomenon: in the presented
predictor, the search for a free entry begins on table
Tb, with b=i+1 with probability 1/2, b=i+2, with prob-
ability 1/4 and b=i+3 with probability 1/4.

The pseudo-random generator used in the presented
predictor is a simple 2-bit counter.

(B) Initializing the allocated entry: An allocated entry is
initialized with the prediction counter set to weak cor-
rect. Counter u is initialized to 0 (i.e., strong not use-
ful).

2. Characteristics of the submitted L-TAGE
predictor

2.1. Information used for indexing the branch pre-
dictor

2.1.1. Path and branch history The predictor compo-
nents are indexed using a hash function of the program
counter, the global branch history ghist (including non-
conditional branches as in [6]) and a (limited) 16-bit path
history phist consisting of 1 address bit per branch.

2.1.2. Discriminating kernel and user branchs Kernel
and user codes appear in the traces. In practice in the traces,
we were able to discrimate user code from kernal through
the address range. In order to avoid history pollution by ker-
nel code, we use two sets of histories: the user history is up-
dated only on user branches, kernel history is updated on all
branches.

2.2. Tag width tradeoff

Using a large tag width leads to waste part of the storage
while using a too small tag width leads to false tag match
detections. Experiments showed that one can use narrower
tags on the tables with smaller history lengths.

2.3. Number of the TAGE predictor components

For a 256 Kbits predictor, the best accuracy we found is
achieved by a 13 components TAGE predictor.

2.4. The submitted L-TAGE predictor

2.4.1. The loop predictor component The loop predictor
simply tries to identify regular loops with constant number
of iterations.

The loop predictor provides the global prediction when
the loop has successively been executed 3 times with the
same number of iterations. The loop predictor used in the
submission features 256 entries and is 4-way associative.

Each entry consists of a past iteration count on 14 bits, a
current iteration count on 14 bits, a partial tag on 14 bits, a
confidence counter on 2 bits and an age counter on 8 bits,
i.e. 52 bits per entry. The loop predictor storage is therefore
13 Kbits.

Replacement policy is based on the age. An entry can be
replaced only if its age counter is null. On allocation, age is
first set to 255. Age is decremented whenever the entry was

a possible replacement target and incremented when the en-
try is used and has provided a valid prediction. Age is re-
set to zero whenever the branch is determined as not being
a regular loop.

2.4.2. The TAGE predictor component The TAGE pre-
dictor features 12 tagged components and a base bimodal
predictor. Hysteresis bits are shared on the base predictor.
Each entry in predictor table Ti features a Wi bits wide tag,
a 3-bit prediction counter and a 2-bit useful counter.

The submitted predictor uses 4 as its minimum history
length and 640 as its maximum history length.

The characteristics of the TAGE component are summa-
rized in Table 1. The TAGE predictor features a total of
241.5 Kbits of prediction storage.

2.4.3. Total predictor storage budget Apart the predic-
tion table storage, the predictor uses two 640 bits global
history vectors, two 16 bits path history vectors, a 4 bits
USE ALT ON NA counter, a 19 bits counter for gracefully
resetting the u counters, a 2-bit counter as pseudo-random
generator and a 7-bit counter WITHLOOP to determine the
usefulness of the loop predictor. That is an extra storage of
1344 bits.

Therefore the predictor uses a total of (241.5+13)*1024
+ 1344 = 261,952 storage bits.

3. Implementation issues

3.1. The prediction response time

Since the loop predictor features a small number of en-
tries, the response time of the submitted predictor is domi-
nated by the TAGE response time.

The prediction response time on most global history
predictors involves three components: the index computa-
tion, the predictor table read and the prediction computa-
tion logic.

It was shown in [6] that very simple indexing functions
using a single stage of 3-entry exclusive-OR gates can be
used for indexing the predictor components without sig-
nificantly impairing the prediction accuracy. In the simula-
tion results presented in this paper, full hash functions were
used. However experiments using the 3-entry exclusive-OR
indexing functions described in [6] showed a very similar
total misprediction numbers (+0.03 misp/KI).

The predictor table read delay depends on the size of ta-
bles. On the TAGE predictor, the (partial) tags are needed
for the prediction computation. The tag computation may
span during the index computation and table read without
impacting the overall prediction computation time. Com-
plex hash functions may then be implemented.

The last stage in the prediction computation on the
TAGE predictor consists in the tag match followed by the

Base T1,T2 T3,T4 T5 T6 T7 T8,T9 T10 T11 T12
history length 4,6 10,16 25 40 64 101,160 254 403 640
Nb entries 16K pred. 1K 2K 2K 2K 1K 1K 1K 0.5K 0.5K

4K hyst.
Tag width 7 8 9 10 11 12 13 14 15
storage budget (bits) 20K 12K 26K 28K 30K 16K 17K 18K 9.5K 10K

Table 1. Characteristics of the TAGE predictor components

prediction selection. The tag match computations are per-
formed in parallel on the tags flowing out from the tagged
components.

Therefore, on an aggressively pipelined processor, the
response time of the L-TAGE predictor is unlikely to be a
single cycle, but may be close to three cycles.

Therefore if the submitted L-TAGE predictor was to be
implemented directly, it should be used as an overriding pre-
dictor associated with a fast predictor (e.g. a bimodal table).

3.2. How to address TAGE predictor response
time: ahead pipelining

In order to provide the prediction in time for next in-
struction block address generation, ahead pipelining was
proposed in [9] and detailed in [8] for global history/path
branch predictors. Therefore the access to the TAGE pre-
dictor can be ahead pipelined using the same principle as
described for the OGEHL predictor [6] and illustrated on
Figure 2.

The prediction tables are read using the X-branch ahead
program counter, the X-branch ahead global history and
the X-branch ahead path history. On each of the tables,;=< ���

adjacents entries are read.
;>< ���

possible predictions
are computed in parallel and information on the last X-1
branchs (1 bit per intermediate branch) is used to select the
final prediction. Ahead pipelining induces some loss of pre-
diction accuracy on medium size predictors, mostly due to
aliasing on the base predictor. It is also necessary to check-
point

;0< ���
predictions to be able to resume without delay

on a branch misprediction [9].
For transitions from user mode to kernel mode and vice-

versa, we make the following hypothesis: 1) The first two
branches after a trap or an exception are predicted in a spe-
cial way using 1-block ahead information for the first one
and 2-block ahead information for the second one. 2) The
first two branches after the return in the user code are pre-
dicted with the ahead information available before the ex-
ception or the trap.

3.3. Other implementation issues

3.3.1. Number of predictor components The complex-
ity of a design, its silicon area and its power consumption

increase with the number of components. For a 256 Kbits
predictor, the best accuracy we found is achieved by a 14-
component L-TAGE predictor. However, the TAGE predic-
tor is also quite efficient with a more limited number of
components [10].

3.3.2. Predictor update implementation issues The pre-
dictor update is performed after commit. Therefore the up-
date logic is not on the critical path.

On a correct prediction, at most two prediction coun-
ters ctr and the useful counter u of the matching compo-
nent must be updated, i.e., at most two predictor compo-
nents are accessed.

On a misprediction, a new entry is allocated on a tagged
component. Therefore, a prediction can potentially induce
up to three accesses to the predictor on a misprediction, i.e,
read of all predictor tables at prediction time, read of all pre-
dictor tables at commit time and write of (at most) two pre-
dictor tables at update time. However, the read at commit
time can be avoided: a few bits of information available at
prediction time (the numbers of the provider component,the
alternate component, ctr and u values for these two compo-
nents and the nullity of all the u counters) can be check-
pointed.

The predictor can therefore be implemented using dual-
ported predictor components. However, most updates on
correct predictions concern already saturated counters and
can be avoided through checkpointing the information satu-
rated ctr and saturated u. Using 2 or 4-bank structure for the
predictor tables (as on EV8 predictor [7]) is a cost-effective
alternative to the use of dual-ported predictor tables.

3.3.3. Speculative management

Simple speculative history management On predictor re-
lying only on global history and/or path history such as
TAGE, the speculative management of histories can be im-
plemented through circular buffers [3]. Restoring the branch
history (respectively the path history) consists of restoring
the head pointer.

But complex iteration count management In a deeply
pipelined processor, the effectivity of a loop predictor de-
pends on an accurate management of the speculative iter-
ation counts since several iterations of the same loop can

A
 + H

a

A B C D

4 parallel prediction computations

bc

Figure 2. Principle of 3-block ahead branch prediction: information on branch A is used to predict
the output of branch C; information on block B and C is used to select the final prediction

be inflight at the same time. A loop predictor is imple-
mented used on the Pentium-M. Therefore this complexity
should be considered as manageable.

4. Predictor accuracy

Results per application on the distributed set of traces
are displayed in Table 2 for the submitted L-TAGE predic-
tor.

In order to illustrate the potential of the TAGE predic-
tor, we also present simulation results for TAGE predictors
featuring simpler hardware complexity: the included 241,5
Kbits TAGE component, a 256 Kbits 13-component TAGE
predictor (13C) and a 256 Kbits 8-component TAGE pre-
dictor (8C). Finally, as the TAGE predictor can deliver pre-
diction in time provided that ahead pipelining is used, we
also illustrate simulations results for a 3-branch ahead 256
Kbits TAGE predictor (8C-Ahead).

The average accuracy of the submitted predictor is 3.314
misp/KI on the distributed set of traces. When the loop
predictor is turned off, the 241,5 Kbits TAGE component
achieves 3.368 misp/KI. When the total of the 256 Kbits
are affected to the 13 components of TAGE, 3.357 misp/KI
is achieved. A 256 Kbits 8-component TAGE predictor
achieves 3.446 misp/KI while a 256 Kbits 3-branch ahead
TAGE predictor achieves 3.552 misp/KI.

It can be noted that the benefit of the loop predictor is es-
sentially marginal apart on 164.gzip. Simulations on other

sets of traces confirm that, only very rare applications ef-
fectively benefit from the loop predictor, therefore associat-
ing the loop predictor with TAGE is probably not worth the
complexity for a real implementation.

Using a medium number of components (8) in TAGE in-
stead of the best number of components (13) impacts the ac-
curacy only slightly: for the final designer the choice of the
number of components will be a tradeoff between the ex-
tra complexity induced by using more predictor tables and
a small accuracy loss. Finally, ahead pipelining does not im-
pair very significantly the predictor accuracy and can there-
fore be considered for delivering the prediction in time.

5. Conclusion

The use of multiple global history lengths in a single
branch predictor was initially introduced in [4], then it was
refined by Evers et al. [2] and further appeared in many
proposals. Using tagged predictors was suggested for the
PPM predictor from Chen et al.[1]. A first PPM-like im-
plementable version was proposed in [5]. TAGE enhances
this first proposition by an improved update policy. The
TAGE predictor directly inherits the use of geometric his-
tory length series from the OGEHL predictor [6], but is
more storage-effective. Using only a limited storage, the
loop predictor allows to capture some behaviors that are not
captured by the TAGE predictor.

The submitted L-TAGE predictor can be directly adapted
to hardware implementation as a multi-cycle overriding pre-

164 175 176 181 186 197 201 202 205 209
L-TAGE 10.074 9.010 3.222 9.049 2.442 5.152 5.712 0.371 0.346 2.339
241.5 Kbits TAGE 10.789 9.015 3.263 9.055 2.445 5.156 5.868 0.372 0.352 2.347
13C 10.781 8.990 3.224 9.006 2.415 5.141 5.853 0.368 0.349 2.345
8C 10.615 9.0.80 3.369 9.446 2.534 5.352 5.914 0.379 0.496 2.368
8C-Ahead 10.854 9.384 3.627 9.688 2.728 5.438 6.024 0.406 0.515 2.439

213 222 227 228 252 253 254 255 256 300
L-TAGE 1.080 1.068 0.386 0.592 0.219 0.311 1.460 0.139 0.036 13.284
241.5Kbits TAGE 1.121 1.110 0.399 0.594 0.219 0.325 1.464 0.141 0.041 13.288
13C 1.119 1.114 0.397 0.590 0.218 0.325 1.547 0.141 0.041 13.269
8C 1.147 1.146 0.542 0.633 0.240 0.378 1.513 0.145 0.041 13.528
8C-Ahead 1.195 1.188 0.571 0.690 0.246 0.398 1.581 0.169 0.043 13.868

Table 2. Per benchmark accuracy in misp/KI

dictor backing a fast single-cycle predictor (e.g. a bimodal
predictor) and achieves very high accuracy.

This configuration was submitted because it achieves
very accuracy while it could be implemented in hardware.
However for an effective hardware implementation, the
hardware complexity of the submitted L-TAGE predictor
should be compared with other TAGE-based predictor so-
lutions evaluated in Section 4. These solutions might more
cost-effective tradeoffs between hardware complexity and
predictor performance; in particular:

1 The complexity of a real hardware loop predictor is
higher than only reflected by its prediction storage
budget; the management of the speculative iteration
counts might be a major source of hardware logic com-
plexity. The small accuracy benefit brought by the loop
predictor is probably not worth this extra complexity.

1 The number of components in the submitted predictor
is high: using a smaller number of components, e.g. 8,
might be a better design tradeoff.

1 The L-TAGE predictor would have a multicycle re-
sponse time: using a slightly less accurate but ahead
pipelined TAGE predictor might allow the design of an
overall more efficient instruction fetch front-end [8].

References

[1] I.-C.K. Chen, J.T. Coffey, and T.N. Mudge. Analysis of
branch prediction via data compression. In Proceedings of
the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems, Octo-
ber 1996.

[2] M. Evers, P.Y. Chang, and Y.N. Patt. Using hybrid branch
predictors to improve branch prediction accuracy in the pres-
ence of context switches. In ?�@BADC Annual International Sym-
posium on Computer Architecture, pages 3–11, 1996.

[3] Stephan Jourdan, Tse-Hao Hsing, Jared Stark, and Yale N.
Patt. The effects of mispredicted-path execution on branch

prediction structures. In Proceedings of the International
Conference on Parallel Architectures and Compilation Tech-
niques, October 1996.

[4] S. McFarling. Combining branch predictors. TN 36, DEC
WRL, June 1993.

[5] Pierre Michaud. A ppm-like, tag-based predictor. Journal
of Instruction Level Parallelism (http://www.jilp.org/vol7),
April 2005.

[6] A. Seznec. Analysis of the o-gehl branch predictor. In Pro-
ceedings of the 32nd Annual International Symposium on
Computer Architecture, june 2005.

[7] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeidès. Design
tradeoffs for the ev8 branch predictor. In Proceedings of the
29th Annual International Symposium on Computer Archi-
tecture, 2002.

[8] A. Seznec and A. Fraboulet. Effective ahead pipelining of
the instruction addres generator. In Proceedings of the 30th
Annual International Symposium on Computer Architecture,
June 2003.

[9] André Seznec, Stéphan Jourdan, Pascal Sainrat, and Pierre
Michaud. Multiple-block ahead branch predictors. In Archi-
tectural Support for Programming Languages and Operat-
ing Systems (ASPLOS-VII), pages 116–127, 1996.

[10] André Seznec and Pierre Michaud. A case for (partially)-
tagged geometric history length predictors. Journal of In-
struction Level Parallelism (http://www.jilp.org/vol7), April
2006.

