
Morgan Rae Reschenberg, John Schneider 

11 April 2018 

CS 152 

Laboratory Exercise 4 - Undirected Portion 

 

4.2  Contest: Vectorizing and Optimizing Radix Sort  

 

For the undirected portion of this lab, we elected to vectorise and optimise radix sort. Apart from 

two instances, we were able to vectorise rsort by using the RISC-V vector instruction extension 

to process vector-length  number of elements per operation instead of a single element as would 

be done traditionally. First, we loaded a chunk of elements from our input vector, then we 

applied shift and remainder operations to obtain their least-significant digits. From there, we 

wanted to simply do a scattered store to our buckets vector to update the number of each LSB 

we’d seen, however we ran into an issue with concurrent writes. Because the vector extension 

processed all items from the same read of data, duplicate items weren’t counted in our update.  

 

To fix this, we created a vector of all 1’s that we called our progress vector. Within a loop, we 

used <vmfirst> to get the index of the next element to process. Then, we used this index to 

access our LSB vector (the numbers we wished to count and use to increment our buckets). 

After extracting the element from our LSB vector, we created a scalar vector with this number. 

We then applied <vseq> to this scalar and our original LSB vector to create a mask which 

marked all the duplicates for this LSB. Again, using the mask, we ran <vmpop> to count the 

number of duplicates and, once again referencing the original LSB value extracted to the scalar, 

we inserted the count into a vector which kept track of our running sums. Finally, we subtracted 

the mask from our progress vector (as to not process elements twice), checked that the 

progress vector was not zero (e.g. there were items left to process) and jumped back to the 

beginning of the loop. After this, we were able to add our running sums vector to buckets and 

store our updated counts in memory.  

 

Later, we ran into a similar issue with trying to store our items from the input array into the final 

scratch array using the index vector we’d created. We noticed that trying to store items to the 

same bucket resulted in all items being stored at the same index (i.e. all elements were 

overwritten by the last element in that bucket). To fix this, we employed a technique similar to 

the one above. We again created a progress vector, extracted elements one-by-one, masked 

and counted the duplicates, and decremented the progress vector by the mask to avoid 

processing more than necessary. Within the body of the loop, though, we created a vector to 

subtract instead of a vector to add. As we iterated through the mask, we subtracted one from 

the original index for each duplicate we’d counted thereby generating a new index array which 

gave distinct indices to each element in the same bucket. After getting this information, we were 

able to do a scattered store at the new indices from the current chuck of our input array.  

 

Morgan Reschenberg




In terms of optimisations, we expected to see a slight speedup due to the vectorisation (e.g. 

processing <VL> elements per operation instead of one), but knew that we could optimise 

further by unrolling our code as we’d seen done in <rsort.c>.  

 

Before unrolling, we acquired the following statistics and speedup from our vectorised code.  

 

 rsort 

CPI 2.061849103 

Vector (CPI) 1.109686193 

Speedup (CPI) 1.858047002 

 

First, we unrolled the to_buckets loop which increased the amount of data we grabbed from our 

input vector, found the LSB’s of, and added to our partial sums. This decreased our overall CPI 

by decreasing the amount of cycles required.  

      

 vec-rsort vec-rsort (to_buckets unrolled) 

cycles 266457 253596 

instructions 234316 237823 

D$ accesses 118639 118639 

D$ misses 128 128 

CPI 1.1371694635 1.0663224331 

 

Next, we worked on unrolling the from_buckets loop in addition to our to_buckets loop. In 

from_buckets, we pulled in twice as many partial sums, found our duplicate items, and 

calculated the indices to store. We found that unrolling this loop in addition to the to_buckets 

loop decreased our overall CPI but increased our cycles. We attribute the increase in cycles to 

the nature of the code written; in from_buckets we do a lot of conditional processing. For each 

duplicate found, we have to iterate through all matching duplicates and update the index vector 

duplicate_count times. When increasing the amount of data we process, that duplicate_count 

has potential to increase depending on the data we’re processing. Because the amount of times 

we have to execute that loop is data dependent rather than dependent on the amount of data, 

unrolling doesn’t help us increase the speedup.  

 

 vec-rsort vec-rsort (to_buckets 

unrolled) 

vec-rsort (to_buckets, 

from_buckets unrolled) 



cycles 266457 253596 282425 

instruction

s 

234316 237823 271954 

D$ 

accesses 

118639 118639 118639 

D$ misses 128 128 128 

CPI 1.137169463

5 

1.0663224331 1.038502835 

 

Our final CPI for this project ended up being roughly 1.04. We unrolled each loop two times and, 

if we had more time, would look into removing costly vector instructions, unrolling further to 

eliminate short loops, and loading/storing to memory less frequently (e.g. keeping a buckets 

vector in one of our vector registers throughout the program).  


